A Curvature-Tensor-Based Perceptual Quality Metric for 3D Triangular Meshes

نویسندگان

  • Fakhri Torkhani
  • Kai Wang
  • Jean-Marc Chassery
چکیده

Perceptual quality assessment of 3D triangular meshes is crucial for a variety of applications. In this paper, we present a new objective metric for assessing the visual difference between a reference triangular mesh and its distorted version produced by lossy operations, such as noise addition, simplification, compression and watermarking. The proposed metric is based on the measurement of the distance between curvature tensors of the two meshes under comparison. Our algorithm uses not only tensor eigenvalues (i.e., curvature amplitudes) but also tensor eigenvectors (i.e., principal curvature directions) to derive a perceptually-oriented tensor distance. The proposed metric also accounts for the visual masking effect of the human visual system, through a roughness-based weighting of the local tensor distance. A final score that reflects the visual difference between two meshes is obtained via a Minkowski pooling of the weighted local tensor distances over the mesh surface. We validate the performance of our algorithm on four subjectively-rated visual mesh quality databases, and compare the proposed method with state-of-the-art objective metrics. Experimental results show that our approach achieves high correlation between objective scores and subjective assessments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast roughness-based approach to the assessment of 3D mesh visual quality

We propose in this paper a new objective metric for the visual quality assessment of 3D meshes. The metric can predict the extent of the visual difference between a reference mesh, which is considered to be of perfect quality, and a distorted version. The proposed metric is based on a mesh local roughness measure derived from Gaussian curvature. The perceptual distance between two meshes is com...

متن کامل

A Curvature Tensor Distance for Mesh Visual Quality Assessment

This paper presents a new objective metric for assessing the visual difference between a reference or ‘perfect’ mesh and its distorted version. The proposed metric is based on the measurement of a distance between curvature tensors of the two triangle meshes under comparison. Unlike existing methods, our algorithm uses not only eigenvalues but also eigenvectors of the curvature tensor to derive...

متن کامل

Mesh Approximation Using a Volume-Based Metric

In this paper we introduce a mesh approximation method that uses a volume-based metric. After a geometric simplification, we minimize the volume between the simplified mesh and the original mesh using a gradient-based optimization algorithm and a finite-element interpolation model implicitly defined on meshes. The notable contribution of this paper is the theoretical framework which permits the...

متن کامل

Perceptual quality assessment of 3D dynamic meshes: Subjective and objective studies

Nowadays, 3D mesh animations have been increasingly used in various applications, e.g., in digital entertainment and physically-based simulation. In many applications, it is possible that a surface animation undergoes some lossy operations which can impair its perceptual quality. Since the end users of mesh animations are often human beings, the perceptual quality assessment of 3D dynamic meshe...

متن کامل

Curvature tensor computation by piecewise surface interpolation

Estimating principal curvatures and principal directions of a smooth surface represented by a triangular mesh is an important step in many CAD or graphics related tasks. This paper presents a new method for curvature tensor estimation on a triangular mesh by replacing flat triangles with triangular parametric patches. An improved local interpolation scheme of cubic triangular Bézier patches to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014